Finding Lower Bounds on the Complexity of Secret Sharing Schemes by Linear Programming

نویسندگان

  • Carles Padró
  • Leonor Vázquez
چکیده

Optimizing the maximum, or average, length of the shares in relation to the length of the secret for every given access structure is a difficult and long-standing open problem in cryptology. Most of the known lower bounds on these parameters have been obtained by implicitly or explicitly using that every secret sharing scheme defines a polymatroid related to the access structure. The best bounds that can be obtained by this combinatorial method can be determined by using linear programming, and this can be effectively done for access structures on a small number of participants. By applying this linear programming approach, we improve some of the known lower bounds for the access structures on five participants and the graph access structures on six participants for which these parameters were still undetermined. Nevertheless, the lower bounds that are obtained by this combinatorial method are not tight in general. For some access structures, they can be improved by adding to the linear program non-Shannon information inequalities as new constraints. We obtain in this way new separation results for some graph access structures on eight participants and for some ports of non-representable matroids. Finally, we prove that, for two access structures on five participants, the combinatorial lower bound cannot be attained by any linear secret sharing scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal complexity of secret sharing schemes with four minimal qualified subsets

The complexity of a secret sharing scheme is defined as the ratio between the maximum length of the shares and the length of the secret. This paper deals with the open problem of optimizing this parameter for secret sharing schemes with general access structures. Specifically, our objective is to determine the optimal complexity of the access structures with exactly four minimal qualified subse...

متن کامل

A Fast Publicly Verifiable Secret Sharing Scheme using Non-homogeneous Linear Recursions

A non-interactive (t,n)-publicly veriable secret sharing scheme (non-interactive (t,n)-PVSS scheme) is a (t,n)-secret sharing scheme in which anyone, not only the participants of the scheme, can verify the correctness of the produced shares without interacting with the dealer and participants. The (t,n)-PVSS schemes have found a lot of applications in cryptography because they are suitable for<...

متن کامل

Lower Bounds on the Information Ratio of Linear Secret Sharing Schemes

Superpolynomial lower bounds on the average information ratio of linear secret sharing scheme are presented in this note for the first time. The previously known superpolynomial lower bounds applied only to the average information ratio of linear schemes in which the secret is a single field element. The new bounds are obtained by a simple adaptation of the techniques in those previous works.

متن کامل

Improving the Linear Programming Technique in the Search for Lower Bounds in Secret Sharing

We present a new improvement in the Linear Programming technique to derive bounds on information theoretic problems. In our case, we deal with the search for lower bounds on the information ratio of secret sharing schemes. We obtain non-Shannon-type bounds without using information inequalities explicitly. Our new techniques makes it possible to determine the optimal information ratio of linear...

متن کامل

Secret-Sharing Schemes: A Survey

A secret-sharing scheme is a method by which a dealer distributes shares to parties such that only authorized subsets of parties can reconstruct the secret. Secret-sharing schemes are important tools in cryptography and they are used as a building box in many secure protocols, e.g., general protocol for multiparty computation, Byzantine agreement, threshold cryptography, access control, attribu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2010